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Abstract

The abundance of Culex restuans and Culex pipiens in relation to ecological
predictors is poorly understood in regions of the United States where
their ranges overlap. It is suspected that these species play different roles in
spreading West Nile virus (WNV) in these regions, but few studies have
modeled these species separately or accounted for spatial correlation using
Bayesian methods. We wused mosquito surveillance data collected by
the Pennsylvania Department of Environmental Protection from 2002 to 2016
and integrated nested Laplace approximations with the stochastic partial dif-
ferential equation approach to predict C. restuans and C. pipiens abundance in
relation to several ecological predictors. We then made a predictive risk sur-
face of abundance for each species at locations that were not sampled.
Explanatory variables in the models included ecological variables previously
described to be important predictors of the abundance of these mosquito spe-
cies. Developed habitat, temperature, and precipitation were important predic-
tor variables for the abundance of C. restuans, whereas developed habitat,
snow water equivalent, and normalized difference water index were important
predictor variables for the abundance of C. pipiens. The abundance of
C. restuans had a negative relationship with developed habitat in contrast to
C. pipiens abundance, which had a positive relationship with developed habi-
tat. Julian date was modeled as a temporal trend for both species and showed
C. restuans to be more abundant from late April through late June and
C. pipiens to be more abundant from July through September. A seasonal
crossover was observed between these two species on Julian day 185, 4 July.
We observed different spatial patterns of abundance in the predictive risk
maps of each of the species. Our results indicate that modeling the abundance
of these species spatially and separately in regions where these two mosquito
vectors coexist can help gain further insight into understanding the epidemiol-
ogy of WNV in human and susceptible animal populations.
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INTRODUCTION WNV-associated population declines in this region

West Nile virus (WNV; family Flaviviridae, genus
Flavivirus) was first detected in North America in 1999
(Nash et al., 2001) and has become endemic throughout
the United States and Canada. The virus, which can
cause morbidity and mortality in humans, equines, and
several avian species, has become a global threat to
human and animal health (Gray & Webb, 2014).
The transmission cycle of WNV alternates between
multiple wild bird reservoirs and mosquito vectors,
both of which vary regionally (Kramer et al., 2008;
Reisen, 2013). Human and animal infections of WNV
are clustered in space and time (Mostashari et al., 2003;
Sugumaran et al., 2009). To help predict WNV transmis-
sion cycles and implement targeted surveillance and
control measures, the spatial and temporal distributions
of mosquito communities and population dynamics
must be understood (Sallam et al., 2017).

Epidemiologically, the abundance and reproductive
rate of mosquitoes determine the frequency of host
contact, the rate of pathogen transmission, and
subsequently the risk of infection in humans and
other animals (Smith, 1987). Thus, in areas where
mosquito-borne viruses are known to occur widely
and reservoirs are present, mosquito abundance can be
used to identify areas at risk for disease transmission
(Cleckner et al., 2011). Determining the spatial and
temporal distribution of mosquito vectors could help
predict the areas at risk of mosquito-related diseases,
especially during outbreaks (Sallam et al., 2017). In
addition, risk maps generated from distribution models
can help in understanding the geographic distribution
range of unsampled areas, which is needed to target
mosquito surveillance and control efforts in these areas
(Sallam et al., 2017).

Further understanding the spatial epidemiology,
ecology, and distribution of Culex pipiens and
Culex restuans is of particular interest to human and
animal health because it has been estimated that
these two mosquito vectors are responsible for up
to 80% of human WNV cases in the northeastern
United States (Kilpatrick et al., 2005). In addition,
several avian species, including American crows
(Corvus brachyrhynchos) and ruffed grouse (Bonasa
umbellus), have been documented to be vulnerable to

(George et al., 2015; LaDeau et al., 2007; Stauffer
et al.,, 2018). In the northeastern United States,
C. restuans and C. pipiens are abundant and have been
suggested to be maintenance vectors of WNV (Turell
et al., 2005). Although both of these species primarily
feed on blood from avian hosts (Molaei et al., 2006),
they have ecological differences, including C. restuans
being endemic and generally inhabiting rural and
undeveloped sites (Ebel et al., 2005; Johnson et al.,
2015) and C. pipiens being invasive and predominantly
found in urban areas and other anthropogenic habitats
(Fonseca et al., 2004). C. restuans is considered to be an
early season vector of WNV, whereas C. pipiens has
been identified to play a greater role in amplifying
the virus later in the season (Andreadis et al., 2001;
Johnson et al., 2015). This difference is suspected to
be due to the abundances of the two mosquito
species shifting seasonally (Kunkel et al., 2006;
Lampman et al., 2006).

In regions where these two mosquito species coexist,
the epidemiology of WNV remains unclear (Johnson
et al.,, 2015). Due to C. restuans and C. pipiens being
similiar in appearance and difficult to separate, some
authors do not differentiate between the two species and
subsequently classify them to be C. pipiens/restuans (Ebel
et al., 2005). Thus, the two species are often pooled
together (Harrington & Poulson, 2008), which makes it
difficult, if not impossible, to use commonly collected
mosquito surveillance data to determine the epidemiol-
ogy of WNV (Ebel et al., 2005; Johnson et al., 2015).
From 2002 to 2016, the Pennsylvania Department of
Environmental Protection (DEP) conducted mosquito
surveillance for WNV statewide and distinguished
between C. restuans and C. pipiens when determining the
abundance of these vector species. Our objectives were:
(1) to use integrated nested Laplace approximations
(INLA) spatial models to understand the relationship of
ecological variables (e.g., temperature, precipitation,
developed, and agriculture) to the abundance of each of
C. restuans and C. pipiens, and (2) to make a predictive
risk map for the abundance of each species at a large
extent (e.g., state and provincial levels), but with fine res-
olution (meters-kilometers), to further understand the
ecology and spatial distribution of these species in
regions where they coexist.
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METHODS
Study area

Our study area consists of the entire state of
Pennsylvania, USA, which is centered at 41.203323
latitude and —77.194527 longitude. Pennsylvania has a
diverse landscape, including the Appalachian Mountains
in the interior, agricultural areas, and large metropolitan
areas (Frankson et al., 2017). The climate throughout the
state generally has a humid continental climate with hot
and humid summers and cold winters (Frankson
et al., 2017). The climatic patterns in Pennsylvania
depend on elevation, latitude, and proximity to large
water bodies (Gelber, 2002). The Appalachian Mountains
cause higher elevations to receive more precipitation
than other regions, and southeastern Pennsylvania has
less rain and snow and milder winters than the northern
and western regions of the state (Gelber, 2002). The
Atlantic Ocean and Lake Erie moderate the climate of
coastal areas and the northwestern region, respectively
(Frankson et al., 2017).

Mosquito surveillance

The DEP conducted surveillance of WNV in mosquitoes
from 2002 to 2016 by setting gravid traps from April to
September statewide. Data collected from these efforts
included mosquito abundance by vector species. Traps
were set to include one overnight and two crepuscular
periods, which typically represented 18-24 h of capture
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effort. Only one gravid trap was placed at each site within
a given 24-h period; however, some sites were surveyed
more routinely within and across years due to the local
prevalence of WNV and public requests.

Upon collection, samples were immediately shipped to
the DEP using dry ice, which helped maintain sample
integrity for identification. Gravid C. restuans and
C. pipiens mosquitoes were identified to species using mor-
phological characteristics (Darsie & Hutchinson, 2009;
Darsie & Ward, 2005). If species could not be distinguished
between C. restuans and C. pipiens in a trap, we excluded
those observations. Some sites had multiple mosquito
counts recorded on a given day, so we also excluded
these observations to prevent errors from being incorpo-
rated into our dataset. Surveillance data that met our
criteria resulted in 187,390 samples containing C. restuans
and/or C. pipiens distributed throughout Pennsylvania
(Figure 1). Of the data meeting our criteria, the mean
number of traps set per year was 12,493 + 3624 SD. The
number of unique sites sampled ranged from approxi-
mately 3000-6600 per year. The number of traps set
ranged from 5745 to 9337 per year from 2002 to 2005, and
from 10,494 to 14,473 per year from 2006 to 2016.

Ecological variables

We considered ecological variables that have been asso-
ciated with C. restuans and/or C. pipiens abundance in
previous studies (Lebl et al., 2013; Rosa et al., 2014;
Yu et al., 2018) and were known or hypothesized to
impact their physiology, reproduction, and survival

FIGURE 1 The distribution of the trapping locations of gravid traps used for mosquito surveillance of West Nile virus by the
Pennsylvania Department of Environmental Protection throughout the state of Pennsylvania, USA, from 2002 to 2016.
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(Table 1). These variables were available in raster
format for the duration of the dataset (2002-2016) that
included temperature, precipitation, snow water equiva-
lent, normalized difference water index (NDWI), eleva-
tion, agriculture, developed, and forest (Appendix S1:
Table S1). We downloaded files for precipitation, snow
water equivalent, and temperature from Daymet
(Thornton et al., 2014). Precipitation and snow water
equivalent were generated from raw files, whereas tem-
perature was generated by averaging the daily maxi-
mum and minimum temperature files. We generated
NDWI from MODIS band 4 and band 6 following
Xu (2006). We then generated a 5-km resolution raster
for each of these variables by resampling the original ras-
ter with a template of the study area, which had a 5-km
resolution containing 5545 cells with a boundary that
extended 5 km outside the study area. The resampling
was conducted using bilinear interpolation in the raster
package in R (Hijmans, 2016; R Core Team, 2021). We
linked the variables for temperature, precipitation,
snow water equivalent, and NDWI to each mosquito

trap observation. We then included time lags for
each of these variables that we determined by using
cross-correlation maps (Curriero et al., 2005) and
taking into account time lags that were found to be
important in previous research (Chuang et al.,, 2012;
Rosa et al., 2014).

Cross-correlation maps are a graphical method that
allows for the visualization of the effects of variables
over intervals of time and are a generalization of
cross-correlation plots, which are commonly used to dis-
play lag associations at single points in time (Curriero
et al., 2005). We derived cross-correlation maps sepa-
rately for C. restuans and C. pipiens. Except for NDWI,
we averaged the daily values of each predictor as a
single daily mean and averaged the log of abundance
across the traps set in the same day. This allowed us to
visualize the correlation between the log abundance at
day ¢ and the mean value of each variable during day
t — x; and t — x,, with x; > x, (Curriero et al., 2005). The
cross-correlation maps were built using the daily averages
from day 1 to 120 days prior to day t. We used the

TABLE 1 Ecological variables considered that could impact Culex restuans and Culex pipiens abundance through physiology,

reproduction, and/or survival.

Importance to Culex restuans and

References

Madder et al. (1983);
Wilton and Smith (1985);
Wang et al. (2011);
Ciota et al. (2014)

Chaves and Kitron (2011);
Chuang et al. (2012)

Reisen et al. (2008)

Bravo-Barriga et al. (2017)

Trawinski and Mackay (2010);
Deichmeister and Telang (2011)

Brown et al. (2008);
Gardner et al. (2013)

Variable Culex pipiens population abundance

Temperature Affects most biological rates, including blood feeding, reproduction,
development of eggs, larvae, and pupae, and survival rates of immatures
and adults.

Precipitation Rainfall may increase quantity and quality of larval sites.

Snow water When and how fast snow melts can influence quantity and quality of

equivalent larval sites.

Elevation Mosquitoes may be less abundant at higher elevations due to cooler
temperatures. They may be more abundant at lower elevations due to
preferred host species and favorable larval habitats being more
available.

Proportion Urban infrastructure can provide larval habitats in the forms of stagnant

developed water and artificial containers.

Proportion Vegetation density is positively correlated with preferred avian host

forested species and trees may offer resting habitats and sugar sources.

Proportion Artificial containers on agricultural sites could facilitate mosquito

agriculture breeding. Livestock kept outdoors at night could provide feeding
opportunities.

Normalized Higher values early in the season have been associated with an earlier

difference start and duration of mosquito breeding. Index might be indicative

water index

Julian date

Year

of the level of moisture in the soil, which would facilitate formation
and persistence of mosquito breeding sites.

Seasonal cycles create periods of year with favorable conditions for
reproduction and growth.

Variation among years determines interannual changes in population size.

Kaufman et al. (2005);
Bravo-Barriga et al. (2017)

McFeeters (2013);
Rosa et al. (2014);
Sriwongsitanon et al. (2015)

Reisen et al. (2008)

Reisen et al. (2008)
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120-day (approximately 17 week) time period because
this period was used to create cross-correlation maps of
these species in a previous study that found this time
period to be a better predictor of mosquito abundance
than approximately 4 weeks, which represents the life-
time of a mosquito, including the aquatic stages (Lebl
et al., 2013). The time lags we used included: temperature
averaged 3-7 days prior to trapping; precipitation aver-
aged 1-40 days prior to trapping; snow water equivalent
averaged 90-120 days prior to trapping; and NDWI aver-
aged 1-17 weeks prior to trapping. For NDWI, we used
weekly averages because daily averages were not avail-
able for this variable.

Using the same methods as described previously, we
derived elevation by aggregating 10-m original files to
the template of the study area, which had a 5-km resolu-
tion. We then assigned an elevation value to each trap,
which was based on the 5-km grid cell in which each
trap fell. We used the US National Land Cover Database
(NLCD) to estimate the proportion of three landscape
features (developed, agriculture, and forest) in each
5-km grid cell (Homer et al., 2015). For developed, we
combined open space with low, medium, and
high-intensity developed categories. For agriculture, we
combined pasture-hay and cultivated crop categories.
For forest, we combined deciduous, evergreen, and
mixed forest categories. To generate the developed, agri-
culture, and forest values for each mosquito trap obser-
vation, we assigned the proportion of each NLCD
category to the 5-km grid cell where it occurred. We
matched this process for each year NLCD was available
because NLCD is released in multiyear increments
(Appendix S1: Table S1). Values of the NLCD data were
assigned to the mosquito trap data based on the year the
traps were set and each year NLCD was available
(Appendix S1: Table S2).

Statistical analysis

We analyzed abundance data of C. restuans and
C. pipiens using hierarchical Bayesian spatial models
using stochastic partial differential equations (SPDEs) in
the INLA in program R (Lindgren et al., 2011; R Core
Team, 2021; R-INLA, 2021; Rue et al., 2009). The SPDE
approach in R-INLA incorporates a Gaussian Markov
random field, which consists of a numeric vector that
links each observation to a spatial location (Krainski
et al.,, 2019). When using SPDE in R-INLA, the spatial
field for geostatistical data is described using a weighted
sum of piecewise linear basis function that is usually
defined across the study area, referred to as a mesh
(Righetto et al., 2020). The mesh is made by a constrained

Delaunay triangulation effect and projects the spatial
effect across the entire study area (Krainski et al., 2019).

To make the mesh (Figure 2), we used methods
described by Krainski et al. (2019). We used the observa-
tions of the mosquito captures as an irregular boundary.
For the inner triangle lengths of the mesh, which are the
largest allowed triangle lengths (Krainski et al., 2019), we
used the value of the prior that we used for the range of
the spatial random field (Zuur et al., 2017), which we fur-
ther describe below. To determine the cutoff points,
which are the shortest distance allowed between the
junctions of the triangle edges (Krainski et al., 2019), we
divided the inner triangle lengths by five, to avoid many
small triangles in clustered locations (Bakka, 2017). To
avoid a boundary effect, we included an offset distance
for the edge of the outer mesh, which was at least five
times larger than the range (Bakka, 2017). To evaluate
the mesh, we used the production of triangles that
appeared regular in size and shape (Krainski et al., 2019).
To avoid computational errors, increase the stability of
the program, and reduce computational time when run-
ning the models, we corrected the Laplace method with
variational Bayes by setting inla.mode = “experimental”
(Gaedke-Merzhiduser et al.,, 2022; Van Niekerk et al.,
2022; Van Niekerk & Rue, 2021).

Models were constructed a priori. To avoid collin-
earity between explanatory variables, the Pearson’s cor-
relation index and the variance inflation factor (VIF)
were calculated prior to running the models. If pairs of
variables had high correlation values (Pearson correla-
tion r> 0.6) or a high variance inflation (VIF > 5),
those variables were not modeled together. We made
separate models for C. restuans and C. pipiens to model
the response variable, which was the count of the num-
ber of mosquitoes trapped per site on a given day. The
covariate Julian date was included in the model to
account for seasonality. Julian date was modeled as a
second-order random walk (rw2) latent model to
account for a nonlinear relationship with the outcome.
The variable year was included as a random effect. We
initially fitted Poisson models to each dataset. If model
validation indicated that this family of models could
not account for the number of zeros, we used
zero-inflated Poisson models. If the model needed to
be corrected for under- or overdispersion, then we used
negative binomial models. For each method used, we
compared the deviance information criterion (DIC)
values of the models and used the method with the
lowest values, which is an indicator of model fit
(Gelman et al., 2014). We then evaluated the models
with and without the spatial effect and determined
based on DIC whether accounting for spatial autocorre-
lation improved model fit.
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FIGURE 2 The mesh of the study area used in the integrated nested Laplace approximation (INLA) program in R to build the
predictive models for Culex restuans and Culex pipiens. The black points are the trapping locations, and the blue line is the boundary of the

study area as determined by the trapping locations. The mesh is extended beyond the study area to avoid a boundary effect in the

calculations.

We used the default noninformative prior distribu-
tions in R-INLA for the fixed regression parameters and
year hyperparameter. The default prior distribution for a
fixed parameter in R-INLA is a normal distribution with
mean 0 and precision 0.001, whereas the default prior for
a hyperparameter has a gamma distribution and a value
of 1 and 0.00001 for the shape and inverse scale parame-
ters, respectively (Zuur et al., 2017). For Julian date and
the spatial random field, we used penalized complexity
priors. Penalized complexity priors have a single parame-
ter that controls flexibility, reduces overfitting, and
improves predictive performance by penalizing devia-
tions from the base model (Moraga, 2019). These priors
are specified by setting values in the following
expression:

Prob(c>u)=uq, (1)

where u > 0, and 0 < a < 1. In the rw2 trend for Julian
date, we used 0.01 for the value of u and 0.05 for the
value of a. For the range of the spatial random field, we
used 10 km for the value of u and 0.05 for the value of a.
For the standard deviation (SD) of the spatial random
field, we used a value of 2.0 for u and 0.05 for a. We
determined these values based on methods described by
Zuur et al. (2017). Briefly, for Julian date, we selected a

value of u that made the trend with mosquito abundance
smoother. For the range of the spatial random field, we
selected a value based on the biology of the species,
which included the maximum dispersal of C. restuans
and C. pipiens (approximately 2.5 km) and the resolution
at which the covariate data were generated (5 km). We
chose a value for the SD of the spatial random field by
applying a linear model to the log-transformed outcome
of C. restuans or C. pipiens abundance and using the
value of the residual standard error. This is the value
expected if the covariates did not explain any variation in
the response variable.

We computed the DIC, Watanabe-Akaike informa-
tion criterion (WAIC), and conditional predictive ordi-
nate (CPO) values and calculated the mean logarithmic
CPO (LCPO) from the CPO values as described by
Roos and Held (2011). The LCPO is a “leave one out”
cross-validation index to assess the predictive power of
the model (Gelman et al., 2014). We selected a top model
for each species using the DIC and LCPO scores. Lower
DIC and LCPO values suggest better model performance
(Gelman et al., 2014; Gémez-Rubio, 2020). To evaluate
model fit, we conducted a simulation study as described
by Myer et al. (2020). For the top model of each mosquito
vector species, we sampled 1000 simulated parameter sets
of estimated mosquito counts from the posterior
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distribution. We then plotted a histogram of the simu-
lated results with 95% prediction intervals against the
observed mosquito counts. If the observed counts were
within the 95% prediction intervals of the simulated
counts, we considered the model to have good prediction.

We generated predictive risk surfaces for each mos-
quito vector species by predicting the expected values at
locations where data were not observed using the
methods described by Krainski et al. (2019). Briefly, we
made a prediction scenario for each species based on the
corresponding top model, joined the prediction with the
data in a stack, and fit the model again in R-INLA. For
the prediction scenario, we extracted covariate values for
each fixed effect from rasters with 5-km resolution. We
made one raster for each fixed effect by averaging the
daily rasters with 5-km resolution over the time lags used
in the analysis for the trapping date of 15 June 2011. We
selected this date because we suspected it would be repre-
sentative of relatively high C. restuans and C. pipiens
abundances throughout the entire study period. We then
projected the summaries of the predicted posterior mean
values, which we categorized into five quantiles, ranging
from low to high mosquito abundance, onto a grid. All
figures were generated in R.

RESULTS

The number of C. restuans captured per trap was
27.2 + 66.8 (mean + SD) and ranged from 0 to 2246 mos-
quitoes. The number of C. pipiens captured per trap was
127+ 40.0 and ranged from 0 to 1460 mosquitoes
caught. Zero C. restuans were reported in 21% of the
traps, whereas zero C. pipiens were reported in 37% of the

traps. Forest was highly correlated with elevation and
developed (Appendix S1: Table S3), so forest was not
included in any models that contained elevation or devel-
oped. We used the negative binomial family to model the
outcome of each mosquito species. Based on DIC and the
model validation results for each mosquito species,
the negative binomial models fit the data better com-
pared to the Poisson and zero-inflated Poisson models
(Appendix S1: Table S4). Inclusion of the spatial effect
improved the model fit for each species based on DIC
(Appendix S1: Table S4), so we included the effect in all
of the models.

We found several of the independent variables to
have statistically important relationships with the out-
come, which is defined in Bayesian terms as having a
95% credible interval around the coefficient that does not
include zero. In the most supported model for C. restuans
(Appendix S1: Table S5), we found an important positive
relationship between precipitation and C. restuans abun-
dance and important negative relationships between
C. restuans abundance and each of the temperature,
developed, and elevation variables (Table 2; Appendix S1:
Figure S1). The abundance of C. restuans in relation to
Julian date showed a seasonal pattern, and abundance
peaked in early June (Figure 3). In the most supported
model for the abundance of C. pipiens (Appendix S1:
Table S6), we found an important positive relationship
between development and C. pipiens abundance and
important negative relationships between C. pipiens
abundance and each of the snow water equivalent and
NDWI variables (Table 2; Appendix S1: Figure S2). The
abundance of C. pipiens in relation to Julian date showed
a seasonal pattern (Figure 3). In contrast to C. restuans,
the abundance of C. pipiens peaked in mid-July

TABLE 2 Numerical summary of the marginal posterior distribution of the fixed effects for the top R-INLA models for Culex restuans

and Culex pipiens.

Species Variable Mean
Culex restuans (Intercept) 2.965
develop —0.341
temp —0.021
precip 0.061
elev —1.098
Culex pipiens (Intercept) —0.538
develop 0.550
Snow —0.004
NDWI —1.002

SD Median Qo.025quant Qo.975quant
0.086 2.965 2.797 3.133
0.045 —0.341 —0.430 —0.253
0.002 —0.021 —0.025 —0.018
0.002 0.061 0.056 0.066
0.129 —1.098 —1.351 —0.844
0.128 —0.538 —0.788 —0.287
0.049 0.550 0.455 0.646
0.000 —0.004 —0.005 —0.004
0.058 —1.002 —1.115 —0.889

Note: For each variable the mean, SD, median, and 95% credible intervals (Qp 025 — Qo.975) are provided, containing 95% of the probability under the posterior

distribution.

Abbreviations: develop, developed; elev, elevation; NDWI, normalized difference water index; precip, precipitation; quant, quantile; snow, snow water

equivalent; temp, temperature.
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FIGURE 3 The posterior means (solid black and dashed black
lines) and 95% credibility intervals (solid pink and solid light blue
lines) for the effect of Julian date on abundance of Culex restuans
(solid black and solid pink lines) and Culex pipiens (dashed black
and solid light blue lines) in Pennsylvania, plotted together.

(Figure 3). When plotted together, the abundance of C.
restuans and C. pipiens shifted relative to one another on
Julian date 185, 4 July (Figure 3). The relationship
between mosquito abundance and each of the indepen-
dent variables considered in the other models is included
in Appendix S1: Table S7.

The posterior mean of the spatial effect represents the
intrinsic spatial variability of the data after accounting
for the covariates (Figure 4a,c). The positive values indi-
cate areas where the spatial random effect causes an
increase in the outcome, and negative values indicate
areas where it causes a decrease (Zuur et al., 2017). If the
value of the spatial random field is 0, then the spatial
term has no effect (Zuur et al., 2017). The range of the
spatial effect and 95% credible interval for C. restuans
was 14.3 km (13.0-15.2) and for C. pipiens was 12.2 km
(10.8-13.5). This indicates that for both mosquito species,
traps located less than these ranges were spatially corre-
lated. The mean and SD of the spatial random effect for
both C. restuans and C. pipiens indicated that the spatial
distribution of these two species was different and vari-
able throughout the state (Figure 4a-d). Values of the SD
of the spatial effect were high compared to the mean SD
of the spatial effect for both C. restuans (mean SD of 0.6)

1.0
0.8
0.6
0.4
0.2

FIGURE 4 For the top predictive model for the abundance of Culex restuans in Pennsylvania, the posterior mean of the spatial effect (a)
and its SD (b). For the top predictive model for the abundance of Culex pipiens in Pennsylvania, the posterior mean of the spatial effect (c)

and its SD (d).
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and C. pipiens (mean SD of 1.0), which indicates a high
degree of variation. The SD of the spatial effect for both
C. restuans and C. pipiens was highest along the borders
and in the north-central region of the state (Figure 4b,d).
Based on the risk maps, C. restuans abundance was
predicted to be low in Philadelphia and the surrounding
area but high in only some areas around Pittsburgh
(Figure 5a). In contrast, some of the highest predicted
abundances of C. pipiens occurred in Philadelphia and
Pittsburgh (Figure 5b), Pennsylvania’s two largest cities.
The abundance of C. restuans was predicted to be high in
agricultural and rural areas of Pennsylvania, in contrast
to the abundance of C. pipiens, which was predicted to
be high in several urban areas with high population
density and some areas with high levels of agriculture.
The simulation histograms for C. restuans generated
counts that were within the range of the observed num-
ber of mosquitoes for 0 counts adequately (Figure 6a).
However, the simulated datasets overpredicted the num-
ber of mosquitoes at high counts and could not account
for all the overdispersion of the original dataset. Similarly,
the model for C. pipiens predicted the number of 0 counts
adequately (Figure 6b), but overpredicted high counts of
mosquito abundance and could not account for the

(@)

a b~ W N

FIGURE 5 Risk map of the predicted mean abundance,
categorized into five quantiles (1, low; 2, low-medium; 3, medium;
4, medium-high; 5, high) of Culex restuans (a) and Culex pipiens (b)
throughout Pennsylvania for 15 June 2011. The black outline of the
circle shows the location of Philadelphia, and the black outline of
the triangle shows the location of Pittsburgh.

overdispersion in the original dataset. These results sug-
gest that our model for C. restuans and C. pipiens likely
overpredicted higher counts of mosquitoes.

DISCUSSION

Using recent advances in spatial statistical modeling, our
results provide further understanding of the ecology and
spatial distribution of abundance of C. restuans and
C. pipiens in the northeastern United States. Several pre-
vious studies attempting to understand the ecology of
mosquito vectors of WNV used nonspatial models at a
county- or several-county extent to investigate the impact
of ecological factors on mosquito occurrence or count
data collected from mosquito surveillance efforts (Brown
et al., 2008; Schurich et al., 2014; Tran et al., 2014). Not
accounting for spatial autocorrelation violates the statisti-
cal assumption that observations are independent of one
another (Bataineh et al., 2006). Inclusion of the spatial
random effect improved our models based on DIC, which
indicates that our data were spatially autocorrelated.
Eco-epidemiologically, the role of a mosquito species
as a vector is defined by its vectorial capacity, which is
measured by variables including adult female abundance,
blood-feeding habits, adult survival, and intrinsic or
genetic factors that influence the ability of the vector
to transmit the pathogen (Rochlin et al, 2019).
Transmission, surveillance, and control of vector-borne
zoonoses depend on the ecology of arthropod vectors, on
the environmental determinants of vector distribution,
and on the ecology of reservoir hosts (Kitron, 1998).
The distribution and abundance of most vectors of zoono-
ses are controlled by environmental determinants
(Diuk-Wasser et al., 2006). Thus, the dynamics of the
transmission of WNV are influenced by the abiotic and
biotic processes that impact the survival and distribution
of arthropod vectors (Diuk-Wasser et al., 2006).
Understanding how environmental factors influence
mosquito ecology and the risk of WNV is critical for the
development of disease management strategies (Gardner
et al., 2014). We found the abundance of C. restuans and
C. pipiens to be associated with various ecological vari-
ables, including temperature, precipitation, and devel-
oped habitat, which is consistent with previous research
(Ciota et al., 2014; Johnson et al., 2015; Yu et al., 2018).
Our results are also consistent with population abun-
dance models developed for these species, which indicate
that mosquito population dynamics are highly dependent
on temperature, but that precipitation and habitat should
be considered as well (Yu et al., 2018). However, it is dif-
ficult to make direct comparisons with the results from
previous studies that did not distinguish between
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FIGURE 6 Simulation study results of the first 50 mosquito counts of 1000 simulated datasets from 1000 posterior samples for the top

predictive model of Culex restuans (a) and Culex pipiens (b).

C. restuans and C. pipiens (Moua et al., 2021; Wang
et al., 2011; Yu et al., 2018).

In the top predictive model for C. restuans and
C. pipiens, we found abundance to be associated with differ-
ent ecological variables, which supports previous sugges-
tions that the ecology of these species is different and that
these two mosquito vectors may subsequently play different
roles in the epidemiology of WNV. The associations we
found between the abundance of each of these vectors of
WNV and land cover variables further support that
C. pipiens is the predominant species in heavily urbanized
environments in large cities (Becker et al., 2014) in contrast
to C. restuans, which is more associated with rural, subur-
ban sites, and less developed sites (Gardner et al., 2013;
Johnson et al., 2015). The pattern of seasonal abundance
we observed for C. restuans and C. pipiens was consistent
with what has been reported in the literature in the north-
east and north-central United States (Helbing et al., 2015;
Kunkel et al, 2006). Where these species overlap,
C. restuans were dominant in spring and early summer,
whereas C. pipiens dominated by midsummer (Johnson
et al., 2015; Kunkel et al., 2006; Lee & Rowley, 2000). This
transition is termed the “Culex crossover” and is important
in the epidemiology of WNV because large populations of
C. restuans that reside on the interface between natural and
anthropogenic environments may carry WNV between
these habitats, which may lead to the virus being
co-amplified by C. pipiens (Johnson et al.,, 2015). Culex
crossovers have been found to be associated with increased
WNV activity and intensity in humans (Kunkel et al., 2006;
Lampman et al., 2006; Tokarz & Smith, 2020). The timing
and duration of the crossovers are influenced by ambient

temperature and can vary, but typically occur in July
(Lampman et al, 2006). The mean crossover day for
C. pipiens and C. restuans in Ohio, which is located in the
north-central United States, was on Julian day 175 + 21
(24 June; Helbing et al., 2015). This is consistent with the
date of the Culex crossover we observed in our study
(Julian day 185, 4 July) in the northeastern United States.
Similar to our study, local populations of C. restuans in
Ohio peaked in June and gradually declined through the
rest of the season, whereas C. pipiens were most abundant
in July and August (Helbing et al., 2015).

Precipitation may have been an important predictor
variable for the abundance of C. restuans because rainfall
is important in creating and maintaining surface water
habitats for mosquitoes to lay their eggs and for larvae to
develop (Gardner et al., 2012). In contrast, snow water
equivalent and NDWI may have been the most important
predictors for the abundance of C. pipiens due to direct
negative impacts of flooding on mosquito larvae produc-
tion in urban areas. For example, heavy rainfall can
decrease mosquito abundance by flooding larval habitat
(Epstein & Defilippo, 2001) and also prevent adult mos-
quitoes from laying egg rafts until the flow of the water
slows (Gardner et al., 2012). The negative relationship
observed between the abundance of C. restuans and tem-
perature is consistent with other research in a laboratory
setting where C. restuans were more negatively affected
by temperature increases compared to other Culex species
(Ciota et al., 2014). With each incremental temperature
increase, C. restuans exhibited significant increases in
adult and immature mortality compared to populations
of C. pipiens (Ciota et al., 2014).
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The ecological variables driving the inverse relation-
ship between C. restuans abundance and elevation is
unclear. Sites higher in elevation in Pennsylvania tend to
have cooler temperatures, less urban habitat, and more
forested habitat than sites at lower elevations. It is possi-
ble that the lower abundances at higher elevations were
influenced by the lack of anthropogenic breeding habi-
tats, including highly polluted waters with high organic
concentration found at sewage treatment plants and
farms (Andreadis et al.,, 2001) and artificial containers
such as storm drains, buckets, and tires (Geery &
Holub, 1989). It is also unclear if our results are indica-
tive of C. restuans populations in heavily forested areas at
higher elevations since these habitats were not sampled
as frequently. Johnson et al. (2015) found Culex cross-
overs of these species to only occur in urban sites sam-
pled and to be absent in forested freshwater wetland
areas, where C. restuans were found in high abundance.
Our results indicated a seasonal Culex crossover. Thus,
our predictions of C. restuans in heavily forested sites,
such as in state forests, where habitat conditions for
C. pipiens are less favorable, should be further validated.

Human risk from mosquito-borne pathogens relies
primarily on mosquito surveillance data, which includes
vector distribution, abundance, and the prevalence of
the pathogen in infected mosquitoes (Diuk-Wasser
et al., 2006). The risk of transmission of WNV to humans
is strongly correlated with the density of infected vector
mosquitoes in a given area (Colborn et al., 2013;
Kilpatrick & Pape, 2013). Thus, determining the relation-
ship between ecological predictors and the abundance of
vectors of WNV allows for human risk of exposure to be
measured on a spatial scale. The spatial risk maps we
made for C. restuans and C. pipiens from the top models
could be used to target areas for additional mosquito sur-
veillance of WNV and to identify areas where additional
sampling is needed. The SDs of the predictive maps
appeared to be the highest in the regions that had fewer
placement of traps, so these areas could be targeted for
future surveillance efforts if more accurate estimates are
needed in these areas.

Several statistical and mathematical models of WNV
were recently reviewed for their application to local public
health decision-making, and the greatest need was for
planning models to be fine-grained (meters-kilometers)
and short-term (days-weeks) (Keyel et al.,, 2021). The
scope of this study was to make one risk map of each spe-
cies at a fine scale that represented an average of mosquito
abundance over several years that could be used to inform
WNV risk at locations with no samples. However, if
short-term predictions are needed for public health plan-
ning to target areas for mosquito control, it is possible to
incorporate a spatial-temporal component into R-INLA

with the SPDE approach to make fine-grained and
short-term models.

Bayesian software is necessary to account for spatial
autocorrelation and pseudoreplication in ecological
datasets because frequentist software tools are limited
(Zuur et al., 2017). Traditionally, Bayesian methods
of inference and prediction in spatial models used
Markov Chain Monte Carlo (MCMC) algorithms (Gilks
et al., 1996). Limitations of using these methods were that
they were computationally demanding and unsuitable for
large datasets (Blangiardo & Cameletti, 2015). As an
alternative to MCMC, Rue et al. (2009) developed INLA
(Krainski et al., 2019), which were more computationally
efficient (Lindgren & Rue, 2015; Rue et al., 2009). To fur-
ther decrease computation time, a SPDE solution was
developed, which was much simpler to compute and can
be used in combination with INLA to model the spatial
variation (Lindgren et al., 2011; Simpson et al., 2012).
INLA models with the SPDE approach have been previ-
ously used to investigate the spatiotemporal epidemiol-
ogy of WNV from mosquito surveillance data at fine
scales and small spatial extents in two counties in New
York (Myer et al., 2017; Myer & Johnston, 2019). Our
results demonstrate how this modeling approach can also
be used for large statewide datasets to predict and map
mosquito abundance at fine resolutions and large spatial
extents. The models may have overpredicted high counts
of mosquitoes for both species and may not have been
able to account for overdispersion of the data due to our
inability to account for other variables that may have
affected population dynamics and capture rates at local
scales, such as wind speed at the trap site and microhabi-
tats used for breeding. Although bias may have been
introduced from unequal sampling of sites across the
state within and between years, Yoo et al. (2016) found
that the abundance of C. pipiens predicted from mosquito
surveillance data in the province of Ontario, Canada, was
not always influenced by the intensity of surveillance
efforts.

CONCLUSIONS

Using mosquito surveillance data collected over nearly
two decades, we developed spatial models of C. restuans
and C. pipiens abundance in relation to several ecological
predictors, including meteorological and landcover vari-
ables, at a statewide extent. We found that analyzing
C. restuans and C. pipiens separately allowed for further
understanding of the spatial distribution and ecology
of these species in regions where they coexist.
Eco-epidemiologically, vector abundance is related to the
risk of transmission of WNV to humans and suspectable
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animal populations. Developing spatial risk maps of
vector abundance can help understand the ecology and
epidemiology of WNV and help visualize mosquito abun-
dance at locations that were not sampled. The risk maps
can also be used to identify areas in need of additional
surveillance or to help target outreach programs. Several
knowledge gaps in mosquito ecology and epidemiology of
vector-borne diseases could be better understood by using
Bayesian hierarchical models that include spatial and/or
temporal random effects. To model the spatial distribu-
tion of mosquito vectors or the epidemiology of WNV,
R-INLA with the SPDE approach is a useful tool because
it has fast computational speed, which is essential for
large datasets, and also has capabilities of modeling data
at fine scales and over large extents.
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